See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261065967

Parsley: a review of ethnopharmacology, phytochemistry and biological activities

Article in Journal of Traditional Chinese Medicine · December 2013

DOI: 10.1016/S0254-6272(14)60018-2 · Source: PubMed

ATIONS	:	reads 1,885	
authoi	rs, including:		
	Mohammad Hosein Farzaei	Mohammad Reza Shams Ardekani	
3	Kermanshah University of Medical Sciences	Tehran University of Medical Sciences	
	86 PUBLICATIONS 899 CITATIONS	92 PUBLICATIONS 1,123 CITATIONS	
	SEE PROFILE	SEE PROFILE	
	Roja Rahimi		
9	Tehran University of Medical Sciences		
	129 PUBLICATIONS 3,990 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

The effect of lavender aromatherapy on test anxiety in female students View project

Persian Medicine View project

中医浆衣

Journal of Traditional Chinese Medicine

Online Submissions: http://www.journaltcm.com info@journaltcm.com

JTCM

J Tradit Chin Med 2013 December 15; 33(6): 815-826 ISSN 0255-2922 © 2013 JTCM. All rights reserved.

REVIEW

Parsley: a review of ethnopharmacology, phytochemistry and biological activities

Mohammad Hosein Farzaei, Zahra Abbasabadi, Mohammad Reza Shams Ardekani, Roja Rahimi, Fatemeh Farzaei

Mohammad Hosein Farzaei, Faculty of Pharmacy, Kermanshah University of Medical Science, Kermanshah 6734667149, Iran; Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Science, Tehran 1417653761, Iran

Zahra Abbasabadi, Faculty of Pharmacy, Kermanshah University of Medical Science, Kermanshah 6734667149, Iran

Mohammad Reza Shams Ardekani, Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Science, Tehran 1417653761, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran 1417653761, Iran

Roja Rahimi, Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Science, Tehran 1417653761, Iran

Fatemeh Farzaei, College of Veterinary Medicine, Kermanshah Razi University, Kermanshah 6715685414, Iran

Correspondence to: Prof. Roja Rahimi, Department of Traditional Pharmacy, Faculty of Traditional Medicine, Tehran University of Medical Science, Tehran 1417653761, Iran. rojarahimi@gmail.com

Telephone: +98-2166412653 Accepted: August 12, 2013

Abstract

OBJECTIVE: To summarize comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley.

METHODS: Databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013. The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence".

RESULTS: Parsley has been used as carminative, gastro tonic, diuretic, antiseptic of urinary tract, anti-urolithiasis, anti-dote and anti-inflammatory and for the treatment of amenorrhea, dysmenorrhea, gastrointestinal disorder, hypertension, cardiac disease, urinary disease, otitis, sniffle, diabetes and also various dermal disease in traditional and folklore medicines. Phenolic compounds and flavonoids particularly apigenin, apiin and 6"-Acetylapiin; essential oil mainly myristicin and apiol; and also coumarins are the active compounds identified in Petroselinum crispum. Wide range of pharmacological activity including antioxidant, hepatoprotective, brain protective, anti-diabetic, analgesic, spasmolytic, immunosuppressant, anti-platelet, gastroprotective, cytoprotective, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities have been exhibited for this plant in modern medicine.

CONCLUSION: It is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

© 2013 JTCM. All rights reserved.

Key word: Petroselinum; Jafari; Medicine, traditional; Pharmacological processes; Chemistry

INTRODUCTION

Petroselinum crispum (mill.) Nym.ex A.W. Hill and in some region Petroselinum hortence Hoffm. From the

family Umbeliferae, are commonly known as parsley. The origin of parsley is from Mediterranean region, but today is cultivated wherever of the world. Parsley is biennial and glabrous. Its height is 60 to 100 cm, numerous stems grow from one root. Roots are thin or thick fusiform to tuberous and vertical. The leaves are tripinnate and ovate. Inflorescences are long pedicled, terminal, with yellowish umbels. The involucre possesses one or two bracts. The petals are splayed with a curved tip. The style thickening is very developed. The fruit is orbicular ovate and greenish-gray, with 2.5 mm length.¹ Moreover than its widely use as a green vegetable and garnish, it is used for different medicinal purposes in traditional and folklore medicine of different countries. Various compounds from different phytochemical categories have been identified in Parsley. Also, different pharmacological activities have been attributed to this plant. The present review summarizes comprehensive information concerning ethnomedicinal uses, phytochemistry, and pharmacological activities of parsley. For this purpose, databases including PubMed, Scopus, Google Scholar, and Web of Science were searched for studies focusing on the ethnomedicinal use, phytochemical compounds and biological and pharmacological activities of parsley. Data were collected from 1966 to 2013 (up to June). The search terms were: "Parsley" or "Petroselinum crispum" or "Petroselinum hortence". There was no language restriction. The reference list from retrieved articles was also reviewed for additional applicable studies. All published studies as well as abstracts presented at meetings were evaluated. In vitro, in vivo and human studies were separated and the data from each was extracted in individual tables

Ethnomedicinal uses

Ethnomedicinal uses of parsley in different countries have been shown in Table 1. In traditional Iranian med-

Table 1 Ethnomedicinal uses of Petroselinum crispur

icine, Petroselinum crispum seeds have been claimed to be antimicrobial, antiseptic, astringent, gastrotonic, antidote, antispasmodic, carminative, digestive and sedative and is used for gastrointestinal disorder, inflammation, halitosis, kidney stone, and amenorrhoea.²⁻⁶ Leaves also are employed as food flavor and antitussive and used for gastrointestinal disorder, exanthema, dermatitis, alphosis, macula, headcool, sniffle, vision performance, hemorrhoid, kidney stone, diuretic and otitis.⁴⁻⁶ The leaves also possess anticoagulant and abortifacient activity and are useful in skin disease, hypertension, hyperlipidemia, hepatotoxic, diabetes, cardiac disease, renal disease, lumbago, eczema, nose bleed, amenorrhoea, dysmenorrhea, kidney stones, prostatitis, halitosis, anaemia, hypertension, hyperuricaemia, constipation, odontalgy, pain, baldness, urinary tract disease, fluid retention and urinary tract infections in ethnomedicine of other countries.⁷⁻¹⁶ The seeds showed diuretic and carminative activity and are useful in gastritis.^{17,18}

Phytochemical constituents

Table 2 shows the structure and phytochemical category of compounds isolated from different parts of parsley.

Flavonoids

Flavonoids are dominant compounds of this plant.¹⁹ Flavonoids including Apigenin, luteolin, chrysoeriol, quercetin and isorhamnetin were detected in cell suspension cultures of Petroselinum hortence.²⁰ Flavonoids apigenin, cosmosiin, oxypeucedanin hydrate and apiin were detected from aqueous extract of Petroselinum crispum leaves.²¹ 6"-Acetylapiin, a flavone glycoside, and petroside, its monoterpene glucoside, were isolated for the first time from methanol extract of Petroselinum crispum aerial part. Myristicin, apiol, cnidilin, isoimperatorin, diosmetin, 7-O- β -D-glucopyran-

Region	Plant part (s) used	Traditional uses and ethnobotanical reports		
Iran	Seeds ²⁻⁶	Antimicrobial, antiseptic, antispasmodic and sedative, gastrointestinal disorder and carminative, di- gestive, astringent, gastrotonic, inflammation, antidote, halitosis, kidney stone and amenorrhoea		
	Leaf 4-6	Food flavor, exanthema, alphosis, macula, headcool, sniffle, otitis, antitussive, diuretic, kidney stone, hemorrhoid, gastrointestinal disorder, vision performance and dermatitis		
Iraq	Leaf 7	Skin disease		
Turkey	Turkey Leaf ^{8.9} Anticoagulant, hypertension, hyperlipidemia, hepatotoxic and o			
	Seeds ¹⁷	Diuretic		
China	Leaf ³⁶	Food flavor		
Morocco	Leaf ¹⁰⁻¹³	Arterial hypertension, diabetes, cardiac disease, renal disease, lumbago, high blood pressure, eczema, and nose bleed Amenorrhoea, dysmenorrhea, kidney stones		
Spain	Leaf 14	Prostatitis, diabetes , halitosis, abortion, anaemia , hypertension, hyperuricaemia, constipation, odon- talgy, pain, baldness		
Italy	Aerial part ¹⁵	Abortifacient		
Peru	Seeds ¹⁸	Carminative and gastritis		
Serbia	Leaf ¹⁶	Urinary tract disease, fluid retention and urinary tract infections		

Farzaei MH et al. / Review

Table 2 Phytochemical	constituents of parsley
-----------------------	-------------------------

Compound	Chemical category	Part/extract
Apigenin	Flavonoid	Leaf/aqueous extract ²¹
		Cell suspension cultures of Petroselinum hortense ²
		Leaf ²³
Luteolin	Flavonoid	Cell suspension cultures of Petroselinum hortense ²
Chrysoeriol	Flavonoid	Cell suspension cultures of Petroselinum hortense ²
Quercetin	Flavonoid	Cell suspension cultures of Petroselinum hortense ²
Isorhamnetin	Flavonoid	Cell suspension cultures of Petroselinum hortense ²
Apiose	Hydrocarbon	Cell suspension cultures of Petroselinum hortense ²
		Seed, stem and leaf of Petroselinum $\operatorname{crispum}^{24}$
Petroside	Hydrocarbon	Aerial part/methanol extract ²²
Cosmosiin	Flavonoid glycoside	leaf/aqueous extract ²¹
Oxypeucedanin hydrate	Flavonoid	leaf/aqueous extract ²¹
Apiin	Flavonoid glycoside	leaf/aqueous extract ²¹
6"-Acetylapiin	Flavone glycoside	Aerial part/methanol extract ²²
Cnidilin	Flavonoid	Aerial part/methanol extract ²²
Diosmetin 7-O-β-D-glucopyranoside	Flavone glycoside	Aerial part/methanol extract ²²
Kaempferol	Flavone glycoside	Aerial part/methanol extract ²²
3-O-β-D-glucopyranoside		-
Kaempferol	Flavonoid	Leaf ²³
Myristicin	Essential oil/ phenylpropene	Aerial part/methanol extract ²²
1		Seed/essential oil ²⁶
Apiol	Essential oil/ phenylpropanoid	Aerial part/methanol extract ²²
		Seed/essential oil ²⁶
Di		Plant, callus and cell extracted volatile oil ²⁹
α-Pinene	Essential oil/ sesquiterpene hydrocarbon	Seed/essential oil ²⁶
o. 1.		Leaf/essential oil ²⁸
Sabinene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Leaf/essential oil ²⁸
β-Pinene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Leaf/essential oil ²⁸
ρ-Cymene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Leaf/essential oil ²⁸
Limonene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Leaf/essential oil ²⁸
β-Phellandrene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Plant, callus and cell extracted volatile oil ²⁹
		Leaf/essential oil ²⁸
γ-Terpinene	Essential oil/ monoterpene hydrocarbon	Seed/essential oil ²⁶
		Leaf/ essential oil ²⁸
Elemicin	Essential oil/ phenylpropene	Seed/essential oil ²⁶
		Leaf/essential oil ²⁸
1-Allyl-2,3,4, 5-tetramethoxy-benzene	Essential oil/ phenylpropene	Seed/essential oil ²⁶
j-cenaniciloxy-delizene	Essential oil/ alcohol sesquiterpene	Seed/essential oil ²⁶
Carotol		
		Seed/essential oil ²⁷
Carotol Eugenol β-Elemene	Essential oil/ phenylpropene Essential oil/ sesquiterpene hydrocarbon	Seed/essential oil ²⁷ Leaf/essential oil ²⁸

Farzaei MH et al. / Review

Table 2 Phytochemical constituents of parsley (continued)						
Compound	Chemical category	Part/extract				
Phenylacetaldehyde	Essential oil/ aldehyde	Leaf/essential oil ²⁸				
γ-Elemene	Essential oil/ sesquiterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Terpineol	Essential oil/ Monoterpene alcohol	Leaf/essential oil ²⁸				
α-Thujene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
Toluene	Essential oil/ aromatic compound	Leaf/essential oil ²⁸				
Camphene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
Hexanal	Essential oil/ aldehyde	Leaf/essential oil ²⁸				
3-Carene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
m- and/or ρ-Xylene	Essential oil/ aromatic compound	Leaf/essential oil ²⁸				
Myrcene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Phellandrene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Terpinene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
2-Pentylfuran	Essential oil/ether	Leaf/essential oil ²⁸				
cis-β-Ocimene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
trans-β-ocimene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Terpinolene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
ρ-1,3,8-Menthatriene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
		Plant, callus and cell extracted volatile $oil^{^{29}}$				
cis-Hex-3-en-l-ol	Essential oil/ alcohol	Leaf/essential oil ²⁸				
4-isopropenyl-1-Methylbenzene	Essential oil/ monoterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Cubebene	Essential oil/ sesquiterpene hydrocarbon	Leaf/essential oil ²⁸				
Benzaldehyde	Essential oil/ aldehyde	Leaf/essential oil ²⁸				
α-Copaene	Essential oil/ sesquiterpene hydrocarbon	Leaf/essential oil ²⁸				
Cryptone	Essential oil/ ketone compound	Leaf/essential oil ²⁸				
β-Bisabolene	Essential oil/ sesquiterpene hydrocarbon	Leaf/essential oil ²⁸				
α-Elemene	Essential oil/ sesquiterpene hydrocarbon	Leaf/essential oil ²⁸				
2-(ρ-Tolyl) propan-2-ol	Essential oil/ monoterpene alcohol	Leaf/essential oil ²⁸				
δ-Cadinol	Essential oil/ sesquiterpene alcohol	Leaf/essential oil ²⁸				
Nonanal	Essential oil/ aldehyde	Plant, callus and cell extracted volatile $\operatorname{oil}^{\scriptscriptstyle 29}$				
Decanal	Essential oil/ monoterpene aldehyde	Plant, callus and cell extracted volatile oil^{29}				
Oxypeucedanin	Furanocoumarin	Leaf and root ³⁰				
Psoralen	Furanocoumarin	Leaf and root ³⁰				
8-Methoxypsoralen	Furanocoumarin	Leaf and root ³⁰				
5-Methoxypsoralen	Furanocoumarin	Leaf and root ³⁰				
Imperatorin	Furanocoumarin	Leaf and root ³⁰				
Isoimperatorin	Furanocoumarin	Aerial part/methanol extract ²²				
		Leaf and root ³⁰				
β-Carotene	Carotenoid	leaf and stem acetone extract ³¹				
Lutein	Carotenoid	leaf and stem acetone extract ³¹				
Violaxanthin	Carotenoid	leaf and stem acetone extract ³¹				
Neoxanthin	Carotenoid	leaf and stem acetone $extract^{31}$				
Ascorbic acid	Vitamin	Aerial part ³²				
Crispane	Sesquiterpene	Seed/Et ₂ O extract ³³ Seed/Et ₂ O extract ³³				
Crispanone l-methyl-4-(methylethenyl)-2,3-dioxabicyclo	Sesquiterpene					
[2.2.2]Oct-5-ene	Oxygenated derivative of monoterpens	Leaf/Et2O extract ³⁴				

oside and kaempferol 3-O- β - D-glucopyranoside were also detected in this extract.²² Moreover, Gadi *et al* ²³ detected kaempferol and apigenin are in Petroselinum crispum leaf.

Carbohydrates

D-glucose and apiose have been detected in cell suspension cultures of Petroselinum hortence (Kreuzaler 1973). Apiose is a sugar detected in seed, stem, and leaf of Petroselinum crispum.²⁴ These sugars mostly contribute in the structure of flavonoid glycosides.

Essential oil components

Seeds of Petroselinum crispum produced high amount of essential oil. Root and leaf also possess the essential oil.25 Myristicin and apiol are the two main components of Petroselinum crispum essential oil which are responsible for its antioxidant activity.²⁶ α -pinene, sabinene, β-pinene, p-cymene, limonene, β-phellandrene, γ-terpinene, myristicin, elemicin, 1-allyl-2,3,4,5-tetramethoxy-benzene, carotol, eugenol and apiol were identified in Petroselinum crispum seed essential oil.^{26,27} Leaf essential oil contained B-elemene, B-caryophyllene, phenylacetaldehyde, γ -elemene, α -terpineol, α -pinene, α-thujene, toluene, camphene, hexanal, β-pinene, sabinene, 3-carene, m- and/or p-xylene, myrcene, α -phellandrene, β -phellandrene, α -terpinene, limo-2-pentylfuran, cis-β-ocimene, γ-terpinene, nene, trans- β -ocimene, ρ -cymene, α -terpinolene, ρ -1,3, cis-Hex-3-en-l-ol, 8-menthatriene, 4-isopropenyl-1-methylbenzene, α -cubebene, benzaldehyde, α -copaene, cryptone, β -bisabolene, α -elemene, 2-(ρ -Tolyl) propan-2-ol, δ-cadinol and elemicin.²⁸ Analysis of volatile oil from Petroselinum crispum plant, callus and cell culture showed that monoterpenes were the main constituent. p-1,3,8-menthatriene was high abundant compound among monoterepenes followed by β-phellandrene and apiol. Moreover, aldehydes (nonanal and decanal) and also fatty acids (Free and bound) were found in the volatile oil.²⁹

Coumarins

Oxypeucedanin is the major furocoumarin of Petroselinum crispum and is responsible for contact photodermatitis induced by this plant. Psoralen, isopimpinellin, 8-methoxypsoralen, 5-methoxypsoralen and imperatorin are other furocoumarins isolated from its leaf and root.³⁰

Miscellaneous compounds

Carotenoids including β -carotene, lutein, violaxanthin and neoxanthin were detected in Petroselinum crispum leaf and stem.³¹ Moreover, ascorbic acid is identified in Petroselinum crispum.³² Ethanol extract of Petroselinum crispum seed have crispane and crispanone.³³ Moreover, l-methyl-4-(methylethenyl)-2,3-dioxabicyclo [2.2.2]oct-5-ene and 4-methyl-7-(methylethenyl)-3,8dioxatricyclo [5.1.0²⁻⁴] octane were isolated from leaves.³⁴

Pharmacological activities

Table 3 shows pharmacological effects of Petroselinum crispum in detail.

Antioxidant activity

Adding Petroselinum crispum leaves to the diet of 14 people for one week caused significant increase in antioxidant enzymes compared with their levels in the basic diet received group. Apigenin was demonstrated to be the main compound responsible for this activity Petroselinum crispum.³⁵ Different extracts from Petroselinum crispum leaves and stems exhibited antioxidant properties in various *in vitro* models.³⁶⁻³⁹ The essential oil from seed showed *in vitro* antioxidant activity. Apiol and myristicin were two components responsible for its antioxidant activity.²⁶

Antidiabetic activity

Various extract from Petroselinum crispum leaves enhanced the liver and blood antioxidant function in normal mice. On the other hand in carbon tetrachloride (CCl(4)) induced oxidative stress mice, the extracts showed both protective and deteriorative activity on liver and blood antioxidant function.37 Petroselinum crispum leaves decreased blood glucose level and demonstrated hepatoprotective activity in diabetic rats via antioxidant activity.9,40 Yanardağ et al reported that the antihyperglycemic activity of Petroselinum crispum is not due to improvement and regeneration of secretory granules and β -cells of pancreas islets.⁴¹ Furthermore, Petroselinum crispum improves hyperglycemia- induced heart and aorta oxidative damage via its antioxidant activity in the heart and aorta tissue.⁴² However, it did not showed significant effect on non-enzymatic glycosylation of skin proteins in diabetic rats.⁴³

Analgesic and spasmolytic activity

Petroselinum crispum seed hydroalcoholic extract revealed analgesic activity in mice.² It also reduced KCl- and CaCl₂-induced contractions on rat isolated ileum dose dependently via blocking voltage-gated calcium channels.³ Different extracts from aerial parts demonstrated antispasmodic activity on spontaneous and acetylcholine- induced contractions of rat isolated ileum.⁴⁴

Immunomodulating activity

Essential oil from Petroselinum crispum seed suppressed humoral and cellular immune response via inhibiting splenocytes and macrophages function.⁴⁵

Gastrointestinal activity

Ethanol extract from Petroselinum crispum leaves executed beneficial effects on different models of peptic ulcer in rats via its anti-secretory and cytoprotective activity.⁴⁶ Aqeoues extract from Petroselinum hortence seeds demonstrated laxative activity in rat by significant absorption of sodium and water and also enhancing Na-KCl₂ transporter activity in the colon.⁴⁷

Farzaei MH et al. / Review

Pharmacologi-		vities of parsle	Method	Result	Active
cal activity	Tiant part	T failt extract	Withou	Result	constituent
Antioxidant- clinical trial	Leaf ³⁵	Plant material	Randomized crossover clinical trial on 7 men and 7 women added leafs in their daily diet for one week	↑ Erythrocyte glutathione reductase (GR) and superoxide dismutase (SOD) compared with those in the basic diet received group	Apigenin
Antioxidant- <i>in vitro</i>	Leaf and stem ³⁶		 (a) DPPH radical-scavenging activity, (b) reducing power of ferric-ferricyanide complex, (c) ferrous ion-chelating activities, (d) hydroxyl radical-scavenging activity, (e) iron-induced linoleic acid oxidation model 	(a) DPPH radical-scavenging activity, (b) significant reducing power, (c) higher ion- chelating activity than EDTA, (d) higher hydroxyl radical activity than ascorbic acid of all extracts except all extracts except stem water extract, (e) inhibition of lipid peroxidation inhibition especially by methanol extracts	-
Antioxidant - <i>in vitro</i>	Leaf and root ³⁷	Methanol extract	(a) lipid peroxidation activity, (b) hydroxyl radical activity, (c) DPPH radical scavenging activity of fractions	(a) Dose dependent inhibition of lipid peroxidation, (b) dose dependently hydroxyl radical scavenging, DPPH radical scavenging; (c) ethyl acetate fraction showed the highest activity	
Antioxidant - <i>in vitro</i>	Leaf ³⁸	(a) Methanolextract and(b) waterextract	(a) Non-specific free radical scavenging activity via chemiluminescence method,(b) determination of malondialdehyde production in isolated brains from young male wistar albino rats	(a) Dose- dependent free radical scavenging activity, (b) inhibition of lipid peroxidation (membrane protection activity)	
Antioxidant <i>-in vitro</i>	Seeds ²⁶	Essential oil	(a) β -carotene bleaching assay, (b) ferrous ion chelating assay, (c) DPPH free radical scavenging assay, (d) fractionation of the essential oil and screeninig of components with antioxidant activity using DPPH free radical scavenging method	(a) EC50 of the essential oil dissolved in methanol in bleaching test was 5.12 mg/mL which was much less than the standard agents (BHT and α -tocopherol), (b) no inhibition on metal chelating, (c) EC50 of the essential oil in DPPH radical scavenging activity was 80.21 mg/mL and was very less than standards, (d) only ethyl acetate/methanol fraction demonstrated free radical	Myristicin and apiol
Antioxidant and hepato -protection <i>-in vivo</i>	Leaf ³⁷	Aqueous, ether, chloroform, ethylacetate, and n-butanol extract	(a) Measurement of lipid peroxidation, glutathione peroxidase, peroxidase, catalase, and xanthine oxidase, (b) glutathione reductase and reduced glutathione in liver homogenate and blood of mice after 5 days, CCl4 induced liver damage in mice	scavenging activity (a) Enhancing activities on measured antioxidant enzymes and reduced lipid peroxidation in liver homogenate and blood sample of mice, (b) the extracts in CCl4 received animals showed both protective and deteriorative activity: both inducing and suppressing of the oxidative action	Flavonoids
Brain protective <i>-in vivo</i>	Leaf ³⁹	Ethanol extract	Measurement of superoxide dismutase, catalase, glutathione peroxidase and also lipid peroxidation in mitochondrial fraction of various regions of the mouse brain in mice brain of D-galactose-induced oxidative stress	of CCl4 Significant increase of antioxidant enzymes and decrease of lipid peroxidation level	
Antidiabetic, hepato- protective <i>-in vivo</i>	leaf ⁹	Aqueous extract	STZ- induced diabetic rats, parsley extract at 2 g/kg administrated for 28 days	No change in body weight; significant decrease in blood glucose level, serum ALP and ALT compared with control; hepatocytes were improved and degenerative changes were reduced	Flavonoids and ascorbic acid

		vities of parsle		Recult	Activo
Pharmacologic al activity	Plant part	Plant extract	Method	Result	Active
al activity Antidiabetic,	leaf ⁴⁰	Aqueous	STZ- induced diabetic rats, parsley	Significant decrease in blood	constituent Flavonoids,
hepato	ical	extract	extract at 2 g/kg for 28 days	glucose, serum ALP, sialic acid,	phenolic
-protective		CALLACT	extract at 2 g/kg for 20 days	uric acid, potassium and sodium	compounds
-in vivo				levels, liver lipid peroxidation and	and ascorbic
-111 0100				non-enzymatic glycosylation and	acid
				increase in liver glutathione; no	ueru
				effect in body weight	
Antidiabetic	1 641	٨	ST7 induced dispetie rate 2 c/les	Significant decrease in blood	
-in vivo	leaf ⁴¹	Aqueous extract	STZ- induced diabetic rats, 2 g/kg parsley extract for 28 days	glucose; no increase in number of	-
		cattact	pursieg exclude for 20 days	secretory granules and cells in islets	
				of pancreas; morphologic changes	
				of the pancreas tissue were not	
				different from control; no	
				regeneration of -cells occurred	
				by extract	
Antidiabetic,	leaf 42	Aqueous	STZ- induced diabetic rats, 2 g/kg	Significant decrease in blood	Flavonoids
heart damage		extract	parsley extract for 28 days	glucose and lipid peroxidation	
-in vivo			administrated, blood glucose, lipid	activity in aorta and heart tissue;	
			peroxidation and glutathione activity of	increase of glutathione level in the	
			aorta and heart tissue were measured.	aorta and heart tissue	
Antidiabetic,	leaf ⁴³	Aqueous	STZ- induced diabetic rats, 2 g/kg	Significant decrease in blood	-
skin damage		extract	parsley extract for 28 days	glucose; no effect on lipid	
-in vivo				peroxidation and non enzymatic	
				glycosylation of skin tissue	
A. 1 .	0 12	TT 1. 1 1 1.	200 (00 000 /100 D 1		
Analgesic	Seed ²		300, 600, 800 mg/100 g Parsley extract		-
-in vivo		c extract	administrated in 2.5% formalin	formalin induced paw licking test; no significant activity on writhing test	
			induced paw licking test and 150, 300, 600 mg/100 g parsley extract		
			administrated in 1% acetic acid		
			(intraperitoneal injection)-induced		
			writhing test on male swiss mice		
Spasmolytic	Aerial part ⁴⁴	Aqueous and	Spontaneous and acetylcholine-	Dose dependently reduction in	-
-in vitro	Actial part	ethanol	induced contractions on rat isolated	spontaneous and acetylcholine-	
		extracts	ileum	induced ileum contraction; ethanol	
				extract had higher activity	
Spacmalutia	C 1 ³	80% otheral	Contraction induced by 60 mM VCl		
Spasmolytic <i>in vitro</i>	Seed ³	80% ethanol	Contraction induced by 60 mM KCl, parsley added before and after	dose dependently reduction in KCl- induced contraction;	-
<i>UN UNTO</i>				inhibition of KCl contraction;	
			contraction and also induced by CaCl ₂ on Wistar rat isolated ileum	dose dependently reduction in	
			on wistar fat isolateu neulli	CaCl ₂ -induced contraction;	
				blocking of voltage-gated calcium	
				channels	
lmmunosuppr	Sands ⁴⁵	Essential oil	Effect of parsley essential oil in different	Suppression of splenocytes	_
essant	Seeds	Losentiai Oli	concentrations (0.01-100 μ g/mL) on	proliferation, PHA-stimulated	
in vitro			proliferation of splenocytes by using	splenocytes and NO by all plant	
			methyl tetrazolium (MTT) method;	concentrations (0.01-100 μ g/mL)	
			nitrite (NO) levels of the cells measured		
			using the diazotization method.		
Pentic ulcor	Leaf ⁴⁶	Ethanol	Pyloric ligation-induced hyper secretion	Significant suppression of asstria	Tannins,
Peptic ulcer protection	Lear			secretion in concentrations of 1	flavonoids
in vivo		extract	and ulcer , stress induced- ulcer using hypothermic restraint,	and 2 g/kg; siginificant protection	and
			indomethacin-induced ulcer and	on stress- induced ulcer and	triterpenes
			cytodestructive agents (80% ethanol,	indomethacin- induced ulcer;	r
			0.2 M NaOH and 25%	replenishment of gastric wall	
			NaCl) -induced ulcer on rats	mucus and non-protein sulfhydryl	
				contents in cytodestructive	
				agents-induced ulcer	

	-	vities of parsley	y (continued)		
Pharmacologic	Plant part	Plant extract	Method	Result	Active
al activity Estrogenic function <i>-in vitro</i>	Aerial part ²²	Methanol extract	Proliferation of the estrogen-sensitive breast cancer cell line (MCF-7) was assayed and bioassay-guided separation performed for detection of the active compounds	Significant proliferative activity on MCF-7 cell which was equal to isoflavone glycosides from soybean; removing the glycoside moieties of the components resulted in increasing of Estrogenic activities: the EC50 values of apigenin, diosmetin, kaempferol were 1.0, 2.9, and 0.56 µM, respectively that are equel to soybean isoflavone	6"-acetylapiin and the aglycones; apigenin, diosmetin
Uterine tonic -in vivo	Aerial part ²²	Methanol extract	7 days oral administration of the extract in ovariectomized mice.	Significant regeneration in the uterus weight of the ovariectomized mice	Apiin, and apigenin
Antimicrobial -in vitro	Leaf ⁷	Hot and cold water extract	100 ,150, 200, 250 mg/mL of parsley extract on Pseudomonas aeruginosa, Staph aureus and Staph pyogenes isolated from patient with burn infection	Antibacterial activity; higher inhibition zone in hot water extract	_
Antimicrobial <i>-in vitro</i>	Leaf and stem ³⁶	Methanol and water extract	Effect on bacterial cell damage and Bacterial growth inhibition on Bacillus subtilis and Escherichia coli	Leaf extracts showed higher cell damage on both bacteria with higher activity with methanol extract; stem extracts showed higher action on the inhibition of the growth of both bacteria	Furocoumarin s and furanocoumar ins
Antimicrobial <i>-in vitro</i>	Leaf ⁵³	Photoactive furocoumarins extract	Antimicrobial assay on human pathogens bacteria and spoilage microorganisms by media-modified method and also, DNA repair-deficient Escherichia coli using photobiological method	Inhibitory activity on Escherichia coli O157:H7, DNA repair-deficient E. coli , Listeria monocytogenes, and also the spoilage microorganisms Erwinia carotovora, and Listeria innocua; no inhibitory activity on Pseudomonas fragi	Psoralen, 8-methoxypso ralen, 5-methoxypso ralen, oxypeucedani n and isopimpinellin
Antimicrobial -in vitro	Leaf ⁵²	Ethanol extract	Antibacterial assay on Lactobacillus plantarum and Leuconostoc mesenteroides using culture media assay	inhibitory activity on both Lactobacillus plantarum and Leuconostoc mesenteroides	-
Antimicrobial -in vitro	Aerial part ⁵⁴	Essential oil	Effect on the growth of Listeria innocua, Serratia marcescens and Pseudomonas fluorescens by disc diffusion method	No antibacterial activity against Listeria innocua, Serratia marcescens and Pseudomonas fluorescens	-
Antimicrobial <i>-in vitro</i>	Leaf ⁵⁵	Methanol extract	Effect 37 μg/ml of extract on the growth of Bacillus subtilis, Escherichia coli, Micrococcus luteus, Pseudomonas aeruginosa, Staphylococcus epidermidis, S.aureus, Candida albicans, Saccharomyces cerevisiae and Aspergillus niger using agar diffusion method	inhibitory activity on B. subtilis, P. aeruginosa, S. epidermidis, S. aureus and S. cerevisiae.	Coumarins
Anti- platelet <i>-in vitro</i>	Leaf ²¹	Aqueous extract	Inhibitory effect of extract and isolated flavonoids on clotting formation and ADP- induced platelet aggregation	No inhibitory effect on clotting activity, while strong antiplatelet aggregation was demonstrated	Apigenin and cosmosiin
Anti-platelet - <i>in vitro</i>	Leaf ²³	Aglycone flavonoids	Effect of pre-incubation of the parsley components on human platelet adhesion to a collagen-coated surface under physiologic flow situation and human platelet thrombin-, ADP- and collagen- induced aggregation	Decreased adhesion of human platelets to collagen surface and also inhibited platelet aggregation in all models dose dependently; the higher inhibition was demonstrated in collagen induced aggregation	Aglycone flavonoids; kaempferol and apigenin

Pharmacologic		ivities of parsle Plant extract	Method	Result	Active
al activity	i i i i i i i i i i i i i i i i i i i	Thank extract		result	constituent
-	Leaf ⁵¹	Aqueous extract	Effect of parsley extract on thrombin-, ADP-, collagen- and epinephrine- induced aggregation (<i>in vitro</i>) subsequent to pre-incubation of platelets with the extract and also on bleeding time of rat and <i>ex vivo</i> aggregation after oral treatment with extract (3 g/kg)	dose dependent inhibition on all model of <i>in vitro</i> aggregation; significant inhibition on <i>ex vivo</i> platelet aggregation in rats and significant delay in bleeding time	Polyphenols
Cardiovascular activity <i>-in vivo</i>	Leaf ⁵⁰	Aqueous and ethanol extracts	Effect on mean blood pressure which recorded from the carotid artery in anaesthetized rats and concomitant with muscarinic receptor antagonist (atropine 1 mg/kg). Effect on rate and amplitude of contraction of atria on isolated rat atria and in pre- administration of atropine (1 mg/kg).	Aqueous extract showed less activity on mean blood pressure than ethanol; ethanol extract showed stronger inhibitory action on rate and amplitude of the contraction, which blocked by muscarinic antagonist agent	-
Laxative -in vitro and in vivo	Seed ⁴⁷	Water extract		(a) Inhibition of both kidney Na+-K+ ATPase and colonocyte Na+-K+ATPase activity; (b) inhibition of absorption of sodium and water in the luminal which enhanced by adding furosemide	Essential oil
Diuretic <i>-in vitro</i> and <i>in vivo</i>	Seed ⁴⁹	Aqueous extract	(a) Effect on urine volume of rats which received the extract 20 %w/v compared with control; (b) Inhibitory effect of extract on kidney homogenate Na+-K+ ATPase activity (<i>in vitro</i>); (c) effect of extract on urine flow using kidney perfusion method in following condition was assayed: extract with sodium free buffer, extract with potassium free buffer, extract with amiloride and extract with furosemide	(a) Significant increase in urine volume; (b) significant decreas in activity of kidney cortex and medulla Na+-K+ ATPase compared with control; (c) significant increase in kidney urine flow rate compared with control; diuretic action of extract was enhanced with amiloride and furosemide and also in sodium free condition, which was not observed in potassium free codition	-
Cytotoxic -in vitro	Aerial part ⁵⁷	Hot water extract	Effect on viability of CV1-P fibroblast cells and SH-SY5Y neuroblastoma cells	No significant activity on the growth of fibroblast cells and neuroblastoma cells	-
Protection of reproductive system - <i>in vivo</i>	Seed ⁴⁸	Isolated oil	Effect on Zearalenone (nonsteroidal estrogenic mycotoxin)- induced testis toxicity assayed by determination of testosterone level and also sperm abnormality and germ cells chromosomal analysis	improved significantly reduction in testosterone level and sperm count and sperm motility; lessoned significantly germ cells chromosomal aberrations induced by Zearalenone	-

Note: STZ: streptozotocin; ALP: alkaline phosphatase; ALT: Alanine aminotransferase; ADP: Adenosine diphosphate.

Effects on genitourinary system

Methanol extract from pseudomonas crispum aerial part showed proliferative activity in estrogen-sensitive breast cancer cell line (MCF-7) equal to isoflavone glycosides from soybean. This estrogenic activity was related to flavone glycosides; 6"-acetylapiin and also aglicones; apigenin, diosmetin, and kaempferol. Furthermore, oral administration of the extract regenerated the uterus weight in ovariectomized mice and apiin and apigenin were responsible for this activity.²² seudomonas crispum oil demonstrated significant protective activity against zearalenone -induced reproductive toxicity and significantly improved testosterone level, sperm count and sperm motility and inhibited germ cells chromosomal aberrations.⁴⁸ Aqeoues extract of pseudomonas hortense seeds exhibited diuretic effect and inhibited Na⁺-K⁺ ATPase activity in kidney cortex and medulla.⁴⁹

Cardiovascular activity

Pseudomonas crispum leaves decreased mean blood pressure which recorded from the carotid artery in anaesthetized rats. This effect was attenuated with muscarinic receptor antagonist. It also decreased rate and amplitude of contraction on isolated rat atria which weakened by muscarinic antagonist. These data indicate hypotensive and negative inotropic and chronotropic activity of pseudomonas crispum.⁵⁰ pseudomonas crispum leaves demonstrated strong antiplatelet aggregation effect. Aglycone flavonoids; keampferol, apigenin and cosmosiin are responsible compounds for this activity. However, it did not exert inhibition on clotting activity *in vitro*.^{21,23,51}

Antimicrobial and cytotoxic activity

Pseudomonas crispum leaves and stems possess antibacterial activity on B. subtilis and E. coli.³⁶ Hot and cold water extract from pseudomonas crispum leaves demonstrated antibacterial activity against pseudomonas aeruginosa, S. aureus and S. pyogenes isolated from patient with burn infection.7 Ethanol extract of pseudomonas crispum leaves inhibited the growth of Lactobacillus plantarum and Leuconostoc mesenteroides.⁵² The furocoumarins isolated extract from pseudomonas crispum leaves demonstrated inhibitory activity against E. coli, L. monocytogenes, Erwinia carotovora, and Listeria innocua and no inhibition against Pseudomonas fragi. Psoralen, 8-methoxypsoralen, 5-methoxypsoralen, oxypeucedanin and isopimpinellin were among the responsible antimicrobial furocoumarins.⁵³ Essential oil from aerial part of Petroselinum crispum had no antibacterial activity against Listeria innocua, Serratia marcescens and Pseudomonas fluorescens.⁵⁴ Methanol extract of Petroselinum crispum leaves demonstrated antimicrobial activity on B. subtilis, Petroselinum aeruginosa, S. epidermidis, S.aureus and S. cerevisiae in vitro. Coumarins are responsible components for this property.55

Toxicity and tolerability

In ethnomedicine, it has been claimed that parsley is abortificient. Acute toxicity of pseudomonas crispum was evaluated in rat and no toxicological effect was observed.⁴⁶ Photodermatitis has been reported in pigs exposed to pseudomonas crispum.⁵⁶ Furocoumarins particularly oxypeucedanin are responsible for its contact photodermatitis activity.³⁰

CONCLUSION

Parsley is a medicinal plant with various proven pharmacological properties including antioxidant, hepatoprotective, neuroprotective, anti-diabeic, analgesic, spasmolytic, immunosuppressant, anti-coagulant, anti-ulcer, laxative, estrogenic, diuretic, hypotensive, antibacterial and antifungal activities.

Beneficial effects of pseudomonas crispum on gastrointestinal tract which claimed in ethnomedicine of various nations, proved via spasmolytic, analgesic, gastroprotective, anti secretive and laxative mechanisms in modern scientific investigations. Moreover, the useful activity of pseudomonas crispum on urinary tract disease was proved via diuretic activity. Its antiseptic property on urinary tract could be due to antimicrobial activity. Ethnomedicinal use of pseudomonas crispum on amenorrhea and dysmenorrhea can be related to its anti-platelet, anti-coagulant, spasmolytic, analgesic and also estrogenic activity. Furthermore, the abortive property could be due to estrogenic and utrerine tonic activity. Efficacious uses of pseudomonas crispum in cardiac disease and hypertension were proved which may be related to its hypotensive, anti-platelet and negative inotropic and chronotropic mechanism. Useful effect on hemorrhoids in ethnomedicine may be due to its immunomodulatory, anti-inflammatory and antioxidant mechanisms. Efficacious folklore uses of pseudomonas crispum on liver disease and diabetes were confirmed by several modern studies. Beneficial activity of pseudomonas crispum on Headcool, otitis, sniffle and flu may be related to its antimicrobial and immunomodulatory activity. Pharmacological studies in order to evaluation and confirmation of other unproved ethnomedicinal effects of parsley especially antiurolithiasis and antitussive activity and beneficial effects on exanthema, eczema and various dermal disease and also visuality are recommended. Because of the reports about abortive properties of parsley, It should not be administered during pregnancy.

Phenolic compounds particularly flavonoids (such as apigenin, apiin and 6"-Acetylapiin), essential oil components (mainly Myristicin and apiol), coumarins and furocoumarins are the active components isolated and detected in Petroselinum crispum. Various bioactive compounds have been isolated and identified in Petroselinum crispum, whereas many active compounds responsible for ethnomedicinal uses or proved pharmacological activities have not been completely evaluated. Therefore, new investigations are proposed to isolate, identify, and obtain the Petroselinum crispum active compounds in order to explore novel natural component for rectifying the stalemate on the way of modern medicine. Overall, it is expectant that this study resulted in improvement the tendencies toward Petroselinum crispum as a useful and important medicinal plant with wide range of proven medicinal activity.

ACKNOWLEDGEMENTS

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES

- 1 **Mozafarian V**. Flora of Iran. Tehran: Forest & Ranglands Research Institute Press, 2007: 54.
- 2 Behtash N, Kargarzadeh F, Shafaroudi H. Analgesic ef-

fects of seed extract from Petroselinum crispum (Tagetes minuta) in animal models. Toxicol Lett 2008; 180(Suppl 5): S127-S128.

- 3 **Moazedi AA**, Mirzaie DN, Seyyednejad SM, et al. Spasmolytic effect of Petroselinum crispum (Parsley) on rat's ileum at different calcium chloride concentrations. Pak J Biol Sci 2007; 10(22): 4036-4042.
- 4 **Aghili MH**, Makhzan-al-Advia. Rahimi R, Shams Ardekani MR, Farjadmand F, editors. Tehran: Tehran University of Medical Sciences, 2009: 329-330.
- 5 **Tonkaboni MM**. Tohfeh-al-Momenin Rahimi R, Shams Ardekani MR, Farjadmand F, editors. Tehran: Shahid Beheshti University of Medical Sciences, 2007: 129.
- 6 **Avicenna**. The cannon of medicine, translated from Arabic to Persian by AbdulrahmanSharaf-kandi. Tehran: Sorush Publication, 1983: 141.
- 7 Aljanaby AAJJ. Antibacterial activity of an aqueous extract of Petroselinum crispum leaves against pathogenic bacteria isolated from patients with burns infections in Al-najaf Governorate, Iraq. Res Chem Intermed 2013; 39 (8): 3709-3714.
- 8 **Oztürk Y**, Baser CHK, Aydın S. Hepatoprotective (antihepatotoxic) plants in Turkey Proceedings of the 9th Symposium on Plant Drugs. Baser KHC (Ed). Eskisehir: Turkey, 1991: 40-50.
- 9 Bolkent S, Yanardag R, Ozsoy-Sacan O, et al. Effects of parsley (Petroselinum crispum) on the liver of diabetic rats: a morphological and biochemical study. Phytother Res 2004; 18(12): 996-999.
- 10 **Ziyyat A**, Legssyer A, Mekhfi H, et al. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 1997; 58(1): 45-54.
- 11 Eddouks M, Maghrani M, Lemhadri A, et al. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J Ethnopharmacol 2002; 82(2-3): 97-103.
- 12 **Jouad H**, Haloui M, Rhiouani H, et al. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez-Boulemane). J Ethnopharmacol 2001; 77 (2-3): 175-182.
- 13 Merzouki A, Ed-Derfoufi F, El-Aallall A, et al. Wild medicinal plants used by local Bouhmed population (Morocco). Fitoterapia 1997; 68(5): 444-460.
- 14 Benítez G, González-Tejero MR, Molero-Mesa J. Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): Ethnopharmacological synthesis. J Ethnopharmacol 2010; 129(1): 87-105.
- 15 Montesano V, Negro D, Sarli G, et al. Notes about the uses of plants by one of the last healers in the Basilicata Region (South Italy). J Ethnobiol Ethnomed 2012; 8: 15.
- 16 Savikin K, Zdunic G, Menkovic N, et al. Ethnobotanical study on traditional use of medicinal plants in South-Western Serbia, Zlatibor district. J Ethnopharmacol 2013; 146 (3): 803-810.
- 17 **Marczal G**, Balogh M, Verzar-Petri G. Phenol-ether components of diuretic effect in pseudomonas crispum I. Acta Agron Acad Sci Hung 1997; 26(1-2): 7-13.
- 18 Rehecho S, Uriarte-Pueyo I, Calvo J, Vivas LA, et al. Eth-

nopharmacological survey of medicinal plants in Nor-Yauyos, a part of the Landscape Reserve Nor-Yauyos-Cochas, Peru. J Ethnopharmacol 2011; 133(1): 75-85.

- 19 **Pápay ZE**, Kósa A, Boldizsár I, et al. Pharmaceutical and formulation aspects of Petroselinum crispum extract. Article in Hungarian. Acta Pharm Hung 2012; 82(1): 3-14.
- 20 **Kreuzaler F**, Hahlbrock K .Flavonoid glycosides from illuminated cell suspension cultures of Petroselinum hortense. Phytochemistry 1973; 12(5): 1149-1152.
- 21 Chaves DS, Frattani FS, Assafim M, et al. Phenolic chemical composition of Petroselinum crispum extract and its effect on haemostasis. Nat Prod Commun 2011; 6(7): 961-964.
- 22 **Yoshikawa M**, Uemura T, Shimoda H, et al. Medicinal foodstuffs. XVIII. Phytoestrogens from the aerial part of Petroselinum crispum MIII. (Parsley) and structures of 6"-acetylapiin and a new monoterpene glycoside, petroside. Chem Pharm Bull 2000; 48(7): 1039-1044.
- 23 **Gadi D**, Bnouham M, Aziz M, et al. Flavonoids purified from parsley inhibit human blood platelet aggregation and adhesion to collagen under flow. J Complement Integr Med 2012; 9: article 19. doi: 10.1515/1553-3840.1579.
- 24 **Hudson CS**. Apiose and the Glycosides of the Parsley Plant. Adv Carbohyd Chem 1949; 4: 57-74.
- 25 **Bruneton J.** Pharmacognosy, Phytochemistry, Medicinal Plants, 2nd ed. London: Intercept Ltd, 1999: 519-520.
- 26 Zhang H, Chen F, Wang X, et al. Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Res Int 2006; 39(8): 833-839
- 27 **Wagner H**, Bladt S. Plant drug analysis. Berlin-Heidelberg: Springer-Verlag; 1996: 154-175.
- 28 **Macleod AJ et al.** volatile constituent of parsley leaves. Phyrochemistry. 1985; 24(11): 2623-2627.
- 29 López MG, Sánchez-Mendoza IR, Ochoa-Alejo N. Compartive study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill). J Agric Food Chem 1999; 47 (8): 3292-3296.
- 30 **Chaudhary SK**, Ceska O, Têtu C, et al. Oxypeucedanin, a major furocoumarin in Parsley, Petroselinum crispum. Planta Med 1986; 52(6): 462-464.
- 31 **Francis GW**, Isaksen M. Droplet counter current chromatography of the carotenoids of parsley Petroselinum crispum. Chromatographia 1989; 27(11-12): 549-551.
- 32 **Davey MW**, Bauw G, Montagu MV. Analysis of ascorbate in plant tissue by high performance capillary zone electrophoresis. Anal Biochem 1996; 239(1): 8-19.
- 33 Spraul MH, Nitz S, Drawert F, et al. Crispane and crispanone, two compounds from Petroselinum crispum with a new carbon skeleton. Phytochemistry 1992; 31(9): 3109-3111.
- 34 **Nitz S**, Kollmannsberger H, Spraul MH, et al. Oxygenated derivatives of menthatriene in parsley leaves. Phytochemistry 1989; 28(11): 3051-3054.
- 35 Nielsen SE, Young JF, Daneshvar B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr 1999; 81(6): 447-455.

- 36 **Wong PYY**, Kitts DD. Studies on the dual antioxidant and antibacterial properties of parsley (Petroselinum crispum) and cilantro (Coriandrum sativum) extracts. Food Chem 2006; 97(3): 505-515.
- 37 **Popović M**, Kaurinović B, Jakovljević V, et al. Effect of parsley (Petroselinum crispum (Mill.) Nym. ex A.W. Hill, Apiaceae) extracts on some biochemical parameters of oxidative stress in mice treated with CCl(4). Phytother Res 2007; 21(8): 717-723.
- 38 **Fejes SZ**, Blázovics A, Lemberkovics E, et al. Free radical scavenging and membrane protective effects of methanol extracts from Anthriscus cerefolium L. (Hoffm.) and Petroselinum crispum (Mill.) nym. ex A.W. Hill. Phytother Res 2000; 14(5): 362-365.
- 39 Vora SR, Patil RB, Pillai MM. Protective effects of Petroselinum crispum (Mill) Nyman ex A. W. Hill leaf extract on D-galactose-induced oxidative stress in mouse brain. Indian J Exp Biol 2009; 47(5): 338-342.
- 40 **Ozsoy-Sacan O**, Yanardag R, Orak H, et al. Effects of parsley (Petroselinum crispum) extract versus glibornuride on the liver of streptozotocin-induced diabetic rats. J Ethnopharmacol 2006; 104(1-2): 175-181.
- 41 **Yanardağ R**, Bolkent S, Tabakoğlu-Oğuz A, et al. Effects of Petroselinum crispum extract on pancreatic B cells and blood glucose of streptozotocin-induced diabetic rats. Biol Pharm Bull 2003; 26(8): 1206-1210.
- 42 **Sener G**, acan O, Yanardak R, et al. Effects of parsley (petroselinum crispum) on the aorta and heart of stz induced diabetic rats. Plant Food Hum Nutr 2003; 58(3): 1-7.
- 43 **Tunali T**, Yarat A, Yanardağ R, et al. Effect of parsley (Petroselinum crispum) on the skin of STZ induced diabetic rats. Phytother Res 1999; 13(2): 138-141.
- 44 Branković S, Kitić D, Radenković M, et al. Relaxant activity of aqueous and ethanol extracts of parsley (Petroselinum crispum (Mill) Nym. ex A. W Hill, Apiaceae) on isolated ileum of rat. Article in Serbian. Med Pregl 2010; 63 (7-8): 475-478.
- 45 Yousofi A, Daneshmandi S, Soleimani N, et al. Immunomodulatory effect of Parsley (Petroselinum crispum) essential oil on immune cells: mitogen-activated splenocytes and peritoneal macrophages. Immunopharmacol Immunotoxicol 2012; 34(2): 303-308.

- 46 Al-Howiriny T, Al-Sohaibani M, El-Tahir K, et al. Prevention of experimentally-induced gastric ulcers in rats by an ethanolic extract of "Parsley" Petroselinum crispum. Am J Chin Med 2003; 31(5): 699-711.
- 47 **Kreydiyyeh SI**, Usta J, Kaouk I, et al. The mechanism underlying the laxative properties of Parsley extract. Phytomedicine 2001; 8(5): 382-388.
- 48 Abdel-Wahhab MA, Abbes S, Salah-Abbes JB, et al. Parsley oil protects against Zearalenone-induced alteration in reproductive function in male mice. Toxicol Lett 2006; 164: S266.
- 49 **Kreydiyyeh SI**, Usta J. Diuretic effect and mechanism of action of parsley. J Ethnopharmacol 2002; 79(3): 353-357.
- 50 **Brankovic S**, Djosev S, Kitic D, et al. Hypotensive and negative chronotropic and inotropic effects of the aqueous and ethanol extract from parsley leaves. J Clin Lipidol 2008; 2(5) (Suppl 1): S191, S408.
- 51 **Gadi D**, Bnouham M, Aziz M, et al. Parsley extract inhibits *in vitro* and *ex vivo* platelet aggregation and prolongs bleeding time in rats. J Ethnopharmacol 2009; 125(1): 170-174.
- 52 Kim OM, Kim MK, Lee SO, Lee KR, Kim SD. Antimicrobial effect of ethanol extracts from spices against Lactobacillus plantarum and Leuconostoc mesenteroides isolated from kimchi. Journal of the Korean Society of Food Science and Nutrition 1998; 27(3): 455-460.
- 53 **Manderfield MM**, Schafer HW, Davidson PM, et al. Isolation and identification of antimicrobial furocoumarins from parsley. J Food Protect 1997; 60(1): 72-77.
- 54 Viuda-Martos M, Mohamady MA, Fernández-López J,et al . In vitro antioxidant and antibacterial activities of essentials oils obtained from Egyptian aromatic plants. Food Control 2011; 22(11): 1715-1722.
- 55 **Ojala T**, Remes S, Haansuu P, et al. Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 2000; 73(1): 299-305.
- 56 **Griffiths IB**, Douglas RGA. Phytophotodermatitis in pigs exposed to parsley (Petroselinum crispum). Vet Rec 2000; 146(3): 73-74.
- 57 Lantto TA, Colucci M, Závadová V, Hiltunen R, Raasmaja A. Cytotoxicity of curcumin, resveratrol and plant extracts from basil, juniper, laurel and parsley in SH-SY5Y and CV1-P cells. Food Chem 2009; 117(3): 405-411.